ASTM A335 P22 Seamless Pipe

ASTM A335 P22 Seamless Pipe

ASTM A335 P22 Seamless Pipe is high-quality alloy-steel pipe designed to withstand high-temperature and high-pressure environments.

Download PDF

ASTM A335 P22 is a seamless ferritic alloy-steel pipe designed for high-temperature and high-pressure applications, particularly in the power generation, petrochemical, and refinery sectors.

Chemical Composition & Mechanical Properties

ASTM A335 P22 Seamless Alloy Steel Pipe offers excellent mechanical strength, corrosion resistance, and durability, making it the ideal solution for high-pressure and high-temperature service applications.

Chemical Composition

Element Composition (%)
Carbon (C) 0.05 - 0.15
Chromium (Cr) 1.90 - 2.50
Manganese (Mn) 0.30 - 0.60
Phosphorus (P) 0.025 max
Sulfur (S) 0.025 max
Silicon (Si) 0.50 - 1.00
Molybdenum (Mo) 0.87 - 1.13

Mechanical Properties

Property Value
Tensile Strength (MPa) 415 min
Yield Strength (MPa) 205 min
Elongation (%) 30 min

Applications of ASTM A335 P22 Pipe

The ASTM A335 P22 pipe is commonly used in high-temperature environments where strength, durability, and corrosion resistance are critical. Typical applications include:

ASTM A335 P22 seamless pipe is a type of seamless ferritic alloy steel pipe designed for high-temperature service. The material is made from low-alloy steel containing chromium and molybdenum, which offer excellent high-temperature strength, corrosion resistance, and toughness. The seamless nature of the pipe ensures a smooth flow of fluid and eliminates the risk of leaks.

Some features of ASTM A335 P22 seamless pipe include:

  1. High-temperature resistance: The pipe can withstand high temperatures up to 600°C (1112°F), making it ideal for use in high-temperature applications such as boilers, heat exchangers, and power generation systems.
  2. Corrosion resistance: The material offers good corrosion resistance due to the presence of chromium, molybdenum, and other elements in the composition, making it ideal for use in harsh environments like chemical processing plants and oil and gas refineries.
  3. High strength and toughness: ASTM A335 P22 seamless pipe has high tensile strength and yield strength, which makes it suitable for high-pressure applications.
  4. Durability: The pipe provides a long service life, reducing maintenance costs and downtime.
  5. Weldability: ASTM A335 P22 seamless pipe can be easily welded using common welding techniques, making it easy to install and maintain.

The applications of ASTM A335 P22 seamless pipe include:

  1. Power generation: It is used for high-temperature applications in power plants, including steam pipelines and boiler components.
  2. Chemical Processing: The pipe offers excellent high-temperature resistance and corrosion resistance, making it ideal for conveying corrosive liquids or gases at high temperatures and pressures in chemical processing plants.
  3. Oil and Gas Industry: It is used in the transportation of crude oil, natural gas, and petroleum products in oil and gas refineries.

In conclusion, ASTM A335 P22 seamless pipe is a high-strength, durable, and corrosion-resistant pipe that is designed for use in high-temperature and high-pressure applications. It is widely used in power generation, chemical processing, and oil and gas industries due to its excellent performance properties.

ASTM A335 P22 Seamless Pipe
ASTM A335 P22 Seamless Pipe
ASTM A335 P22 Seamless Pipe
ASTM A335 P22 Seamless Pipe
ASTM A335 P22 Seamless Pipe
ASTM A335 P22 Seamless Pipe

About ASTM A335 P22 Pipe

A335/SA335 Grade P22 Alloy Steel Seamless Pipes are Carbon steel pipes with addition of chromium, molybdenum, and sometimes vanadium. Chromium, or chrome, improves high-temperature strength, increases oxidation resistance and raises the tensile, yield and hardness at room temperatures.

What is ASTM A335 P22?

ASTM A335 P22 is a grade of seamless ferritic alloy steel pipe for high-temperature service. It is commonly used in power generation and petrochemical industries where high temperature and pressure resistance is required. The alloy composition of ASTM A335 P22 includes chromium (2.25-2.75%), molybdenum (0.87-1.13%), and traces of other elements such as carbon, manganese, silicon, and phosphorus. The pipe is typically supplied in a normalized and tempered condition and can be heat treated for increased toughness and strength. It is available in various sizes and thicknesses and can be customized to suit specific requirements.

The steel material shall conform to chemical composition, tensile property, and hardness requirements. Each length of pipe shall be subjected to the hydrostatic test. Also, each pipe shall be examined by a non-destructive examination method in accordance to the required practices.

The different mechanical test requirements for pipes, namely, transverse or longitudinal tension test, flattening test, and hardness or bend test are presented.

Both ends of each crate will indicate the order no., heat no., dimensions, weight and bundles or as requested.

Chemical Composition(%) of ASTM A335 P22 Seamless Pipe

What are the materials in P22 pipe?

The chemical composition in P22 seamless pipes are carbon 0.05-0.15%, manganese from 0.30-0.60%, silicon up to 1%, chromium up to 2.6%, and molybdenum and silicon like other small elements for the chemical balance.

Compositions Data
UNS Designa-tion K11597
Carbon 0.05-0.60
Manganese 0.30-0.60
Phosphorus(max.) 0.025
Sulfur(max.) 0.025
Silicon 0.50-1.00
Nickel
Chromium 1.00-1.50
Molybdenum 0.44-0.65
Other Elements

Mechanical properties of ASTM A335 P22 Seamless Pipe

Properties Data
Tensile strength, min, (MPa) 415 Mpa
Yield strength, min, (MPa) 205 Mpa
Elongation, min, (%), L/T 30/20

What is the yield strength of ASTM A335 P22?

ASTM A335 P22 pipes have high weldability and ductility making it ideal for operations that consist if bending, flanging or vastoning. These pipes have a minimum tensile strength of 415 MPA and minimum yield strength of 205 MPA.

Related ASTM A335 P22 Seamless Pipe

ASTM A335 Chrome Moly Pipe

What is ASTM A335 material?

ASTM A335 is a standard specification for seamless ferritic alloy-steel pipe intended for high-temperature service. This material is commonly used in power plants, refineries, and other industrial settings where high-temperature and high-pressure conditions are encountered. The "A" in ASTM A335 stands for "alloy," indicating that the pipe is made from alloy steel, which typically includes elements such as chromium, molybdenum, and sometimes vanadium to enhance its high-temperature properties.

Scope

1 This specification covers nominal wall and minimum wall seamless ferritic alloy-steel pipe intended for high-temperature service. Pipe ordered to this specification shall be suitable for bending, flanging (vanstoning), and similar forming operations, and for fusion welding. Selection will depend upon design, service conditions, mechanical properties, and high-temperature characteristics.

2 Several grades of ferritic steels (see Note 1) are covered. Their compositions are given in Table 1.
Note 1.. Ferritic steels in this specification are defined as low- and intermediate-alloy steels containing up to and including 10% chromium.

3 Supplementary requirements (S1 to S7) of an optional nature are provided. These supplementary requirements call for additional tests to be made, and when desired, shall be so stated in the order together with the number of such tests required.

4 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification. The inch-pound units shall apply unless the "M" designation of this specification is specified in the order.

Note The dimensionless designator NPS (nominal pipe size) has been substituted in this standard for such traditional terms as "nominal diameter", "size", and "nominal size".

Why ASTM A335 seamless steel pipe is popular in high temperature application?

ASTM A335 Seamless Steel Pipe is generally named chrome moly pipe for the chemical elements- Molybdenum and Chromium. Molybdenum improves steel performances as steel strength, elastic limit, wear resistance, impact and hardenability.

ASTM A335 seamless steel pipe is a popular choice for high-temperature applications due to several key reasons:

  1. High-temperature resistance: ASTM A335 seamless steel pipe is designed to withstand high temperatures up to 600°C (1112°F), making it an ideal material for high-temperature applications such as steam pipelines and heat exchangers.
  2. Corrosion resistance: ASTM A335 seamless steel pipe exhibits good corrosion resistance in aggressive environments, such as those found in chemical processing and oil and gas industries.
  3. High strength: ASTM A335 seamless steel pipe has high tensile strength and yield strength, making it ideal for use in high-pressure applications.
  4. Good weldability: ASTM A335 seamless steel pipe can be easily welded using traditional methods, with no need for preheating or post-weld heat treatment.
  5. Uniform properties: ASTM A335 seamless steel pipe is produced using a consistent manufacturing process, ensuring that each pipe has uniform properties and quality.
  6. Cost-effective: Despite its superior properties, ASTM A335 seamless steel pipe remains an affordable option for high-temperature applications.

In summary, ASTM A335 seamless steel pipe is popular in high-temperature applications due to its high-temperature resistance, corrosion resistance, high strength, good weldability, uniform properties, and cost-effectiveness. Its combination of properties makes it an ideal choice for use in various high-temperature and high-pressure applications, especially in the power generation, chemical processing, and oil and gas industries.

Referenced Documents (purchase separately)

application

Application

Alloy steel pipes are ideally suitable for chemical, petrochemicals, and other energy-related applications.

The alloy steel pipe adopts high quality carbon steel, alloy structural steel and stainless & heat resisting steel as raw material through hot rolling or cold drawn to be made.

Alloy steel can be used in process area where carbon steel has limitation such as

As an important element of steel products, alloy steel pipe can be divided into seamless steel pipe and welded steel pipe according to the manufacturing technique and tube billet shape.

Here you can see the common alloy steel grade that you will come across.

Why the application of alloy steel pipe is wider than others

There are many kinds of materials used for transport in industrial production. Specifically we will have more choices and it is not limited to the use of alloy steel pipe. But even in the face of more choices, many people tend to choose alloy steel pipe. People make their own choices will have their own reasons. This means the alloy steel pipe application has its own advantages. Compared with transmission lines made of other materials, after it meets the basic application requirements, its quantity is lighter. Then in the practical application of alloy steel pipe, it will have more advantages because of this. Besides its physical characteristic advantage, it also has economic advantages. The wide application of alloy steel pipe is with kinds of reasons. So in practical usage, we can exploit the advantages to the full, in this way can we get more profits in these applications of alloy steel pipe.

What requirements should alloy steel pipe application meet

The transportation of kinds of gases or liquids in production needs to rely on alloy steel pipe. This shows that the actual role of alloy steel pipe application is important. High temperature resistant and low temperature resistant is the tolerance of temperature. In the practical application of alloy steel pipe, there will be many materials need to be transported. However their temperatures are not the same. So this can be the basic requirement to alloy steel pipe. It needs more corrosion resistance. Corrosion resistant material is the best material during transporting, because it is corrosion resistant. So it can be used in more occasions. And it is definitely very convenient for users.

The biggest advantages of alloy steel pipe

Can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy steel pipe total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy steel pipe to provide a wider space for the development of the industry. The future needs of the average annual growth of China’s high-pressure alloy steel pipe long products up to 10-12%.

Specification, standard and identification of alloy steel pipes

Alloy Steel pipe contains substantial quantities of elements other than carbon such as nickel, chromium, silicon, manganese, tungsten, molybdenum, vanadium and limited amounts of other commonly accepted elements such as manganese, sulfur, silicon, and phosphorous.

Industries We Serve

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The biggest advantages of alloy steel pipe can be 100% recycled, environmentally friendly, energy-saving, resource conservation, national strategy, national policy to encourage the expansion of the field of application of high-pressure alloy pipe. Of alloy tube total consumption accounted steel in the proportion is only half of the developed countries, to expand the field of use of the alloy tube to provide a wider space for the development of the industry. According to the Chinese Special Steel Association alloy pipe Branch Expert Group, the future needs of the average annual growth of China’s high-pressure alloy pipe long products up to 10-12%.

Inspection

Chemical composition inspection, mechanical properties test(tensile strength,yield strength, elongation, flaring, flattening, bending, hardness, impact test), surface and dimension test,no-destructive test, hydrostatic test.

PMI

identification of the chemical composition of the metal used to manufacture the fitting. Uses PMI sensors, including X-ray fluorescence or optical emission spectrometry.

PMI
PMI
PMI
PMI
PMI
PMI

Size measurement

Size measurement
Size measurement
Size measurement
Size measurement
Size measurement

Seamless pipes with compound bevels as per ASME B16-25 And ASTM A333

ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe
ASTM A333 Grade 8 Seamless Pipe

Delivery

Steel pipe delivery status(condition)

Steel pipe delivery status(condition): cold / hard (BK), cold / soft (BKW), after cold stress relief annealing (BKS), annealing (GBK), normalized (NBK).

Condition on delivery of steel pipe

Term Symbol Explanation
Cold-finished/hard (cold-finished as-drawn) BK No heat treatment after the last cold-forming process. The tubes therefore have only low deformability.
Cold-finished/soft (lightly cold-worked) BKW After the last heat treatment there is a light finishing pass (cold drawing) With proper subsequent processing, the tube can be cold-formed (e.g. bent, expanded) within certain limits.
Annealed GBK After the final cold-forming process the tubes are annealed in a controlled atmosphere or under vacuum.
Normalized NBK The tubes are annealed above the upper transformation point in a controlled atmosphere or under vacuum.

The general cold strip mills, volume should go through continuous annealing (CAPL unit) to eliminate cold hardening and rolling stress, or batch annealing reach the mechanical properties of the corresponding standard specifies. Cold rolled steel surface quality, appearance, dimensional accuracy better than hot-rolled plate, and right-rolled thin product thickness is about 0.18mm, so the majority of users favor.

Steel strips bunding for fixed pipes

Cold rolled steel coil substrate products deep processing of high value-added products. Such as electro-galvanized, hot dip galvanized, electro-galvanized fingerprint resistant, painted steel roll damping composite steel, PVC laminating steel plates, etc., so that the excellent quality of these products has a beautiful, high resistance to corrosion, has been widely used.

Cold rolled steel coil finishing after annealing, cut the head, tail, trimming, flattening, smooth, heavy volume, or longitudinal clipboard. Cold-rolled products are widely used in automobile manufacturing, household electrical appliances, instruments, switches, buildings, office furniture and other industries. Steel plate strapping package weight of 3 to 5 tons. Flat sub-volume typically 3 to 10 tons / volume. Coil diameter 6m.

Packing

Bare packing/bundle packing/crate packing/wooden protection at the both sides of tubes and suitably protected for sea-worthly delivery or as requested.

Packing
Packing
Packing
Packing
Packing
Packing

Placing steel pipes into containers

Packing
Packing
Packing
Packing
Packing
Packing

There are probably hundreds of different methods for packing a pipe, and most of them have merit, but there are two principles that are vital for any method to work prevent rusting and Sea transportation security.

Our packing can meet any needs of the customers.

FAQ FAQ

Our team of experienced sales specialists proudly partners with gas and chemical processors, power generation plants, oil refineries, and related industries to offer piping components and value-added services.

The most important and desired changes in alloy steel are

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum. These metals are added to produce specific properties that are not found in regular carbon steel. The elements are added in varying proportions (or combinations) making the material take on different aspects such as increased hardness, increased corrosion resistance, increased strength, improved formability (ductility); the weldability can also change.

Alloying Elements & Their Effects

Pipes, Tubes and Hollow Sections

Norms

Grade

Alloying Elements

Commonly used alloying elements and their effects are listed in the table given below.

Alloying Elements Effect on the Properties
Chromium Increases Resistance to corrosion   and oxidation. Increases hardenability and wear resistance. Increases high   temperature strength.
Nickel Increases hardenability. Improves   toughness. Increases impact strength at low temperatures.
Molybdenum Increases hardenability, high   temperature hardness, and wear resistance. Enhances the effects of other   alloying elements. Eliminate temper brittleness in steels. Increases high   temperature strength.
Manganese Increases hardenability. Combines   with sulfur to reduce its adverse effects.
Vanadium Increases hardenability, high   temperature hardness, and wear resistance. Improves fatigue resistance.
Titanium Strongest carbide former. Added to   stainless steel to prevent precipitation of chromium carbide.
Silicon Removes oxygen in steel making.   Improves toughness. Increases hardness ability
Boron Increases hardenability. Produces   fine grain size.
Aluminum Forms nitride in nitriding steels.   Produces fine grain size in casting. Removes oxygen in steel melting.
Cobalt Increases heat and wear   resistance.
Tungsten Increases hardness at elevated   temperatures. Refines grain size.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.