Butt Weld Pipe Tee

Butt Weld Pipe Tee

Butt weld tee has a 90 degree branch along with a straight pipe, it will provide a connects for to install an additional equipment to a pipeline.

A butt weld pipe tee is a type of pipe fitting used to either combine or divide fluid flow in a piping system. The tee has a T-shaped configuration with two horizontal outlets and one vertical outlet, all connected via butt welds. This fitting is essential in many industries, including oil and gas, petrochemical, water treatment, and power generation, for directing, reducing, or splitting fluid flow.

The equal tee (equivalent tee or straight tee) is utilised as the branch has the same distance across as the run pipe. Equal Tee are equipped for taking care of any high or low weight stream of fluid through it.

Butt weld tee has a 90 degree branch along with a straight pipe, it will provide a connects for to install an additional equipment to a pipeline. With the tee structural, same sides of the ends could be welded to the pipe, 90 branch was left open for weld another pipe or a device.

Benefits

Features

Pipe tee

What Is A Tee In Pipe Fitting?

The pipe tee is currently the most frequently used pipe fitting or connector in the industry.

Its functionality is analogous to that of elbows, enabling the creation of branch connections for linear pipelines. As indicated by the name TEE, the shape is T-shaped with two outlets at 90° to the connection to the main line. The pipe piece is of a short length and features an integrated outlet. This is used to connect and take taps with a pipe at a right angle to the linear line. These can be fabricated with various materials, including stainless steel, carbon steel, cast iron, nickel, aluminum, copper, brass, bronze, plastic, rubber, and polypropylene. They are available in a variety of sizes and finishes, such as galvanized, nickel-plated, black cast steel, white coating, gold finish electroplated, and more. These options can be selected based on the end user's requirements. Pipe tees are a common solution in pipeline networks for transporting two-phase fluid mixtures. They can also be used as an alternative to o-rings.

The standard construction of T-shaped elbows (TEs) comprises three openings on the sides of the pipe tees, with two openings being narrower than the other. In some instances, the third opening may be at a 90-degree angle, subject to user requirements. In the case of straight pipe tees with identical opening sizes on all sides, these are referred to as equal tees. Alternatively, they may be classified as reducing tees, which feature one opening of a different size and two openings of the same size. Sanitary pipe tees are a type of pipe tee with a curved branch designed for a clean-out plug, and are used in waste lines. One advantage of this is that it prevents blockages in waste lines. Additionally, a cross pipe tee is available, featuring four equal-sized female openings. It should be noted that this type of pipe tee is not typically used in high-pressure systems and is not a common feature. The opening is threaded and used in conjunction with a threaded plug for a clean-out opening on a drain pipe. The ASME standards for tee design are ASME/ANSI B16.9 or ASME/ANSI B16.11, and the pipe tees are constructed by forging or casting.

Tee fitting application

How Does a Tee Fitting Work?

A tee fitting is a static component of a piping system, designed to connect two or three different pipelines at a single point. These pipelines, which need to be joined via the tee fitting, may have the same diameter, schedule/pressure class, or may vary according to specific requirements. The primary function of a tee fitting is to redirect fluid flow in different directions.

Types of Tee Fittings

There are several types of tee fittings:

Further classifications of tee fittings are based on end connection types, which include:

Why Are Equal Tees Used?

Equal tees are used when all openings of the tee fitting are equal in diameter. The branch connection may be angled, such as 90° or 45°, or any other angle as needed. Equal tees are selected when all branch pipes have the same diameter, ensuring consistent design and dimensions for easy fabrication.

Why Are Unequal Tees Used?

Unequal tees are utilized when the branch pipes have different diameters. The branch connection can be set at angles like 90°, 45°, or any other angle. This type of tee fitting is also used when one or both outlets of the tee are smaller than the main pipeline diameter. However, the design and dimensions used to fabricate unequal tees remain similar to those of equal tees.

What is the Branch of a Tee?

The branch of a tee refers to the connection that diverts flow from the main pipeline at a specific angle, such as 90° or 45°. This branch can either match the main pipeline’s diameter (equal branch) or have a smaller diameter (reducing branch) based on the system requirements.

Sanitary tees are used in T-shaped sanitary pipe fittings, which connect a branch line to a vertical drain line or vent line. Sanitary tees can be manufactured with an existing pipeline diameter or with different diameters to connect to other pipes or valves with different fitting sizes. Sanitary tees are available in a wide range of capacities, classes, shapes and sizes, but can be broadly classified into two main types, which are the most frequently used in industrial and plumbing applications.

Standard Standard

Standard

Pipe fitting dimensions are in either metric or Standard English.

Because pipe fitting covers Pipe Fitting Dimensions several aspects, only the most common pipe fitting sizes can be given here. The most applied version is the 90° long radius and the 45° elbow, while the 90° short radius elbow is applied if there is too little space. The function of a 180° elbow is to change direction of flow through 180°. Both, the LR and the SR types have a center to center dimension double the matching 90° elbows. These fittings will generally be used in furnesses or other heating or cooling units.

Some of the standards that apply to buttwelded fittings are listed below. Many organizations such as ASME, ASTM, ISO, MSS, etc. have very well developed standards and specifications for buttwelded fittings. It is always up to the designer to ensure that they are following the applicable standard and company specification, if available, during the design process.

Some widely used pipe fitting standards are as follows:

ASME: American Society for Mechanical Engineers
This is one of the reputed organizations in the world developing codes and standards.
The schedule number for pipe fitting starts from ASME/ANSI B16. The various classifications of ASME/ANSI B16 standards for different pipe fittings are as follows:

ASTM International: American Society for Testing and Materials
This is one of the largest voluntary standards development organizations in the world. It was originally known as the American Society for Testing and Materials (ASTM).

AWWA: American Water Works Association

AWWA About – Established in 1881, the American Water Works Association is the largest nonprofit, scientific and educational association dedicated to managing and treating water, the world’s most important resource.

ANSI: The American National Standards Institute

ANSI is a private, non-profit organization. Its main function is to administer and coordinate the U.S. voluntary standardization and conformity assessment system. It provides a forum for development of American national standards. ANSI assigns “schedule numbers”. These numbers classify wall thicknesses for different pressure uses.

MSS STANDARDS: Manufacturers Standardization Society
The Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry is a non-profit technical association organized for development and improvement of industry, national and international codes and standards for: Valves, Valve Actuators, Valve Modification, Pipe Fittings, Pipe Hangers, Pipe Supports, Flanges and Associated Seals

Difference between “Standard” and “Codes”:

Piping codes imply the requirements of design, fabrication, use of materials, tests and inspection of various pipe and piping system. It has a limited jurisdiction defined by the code. On the other hand, piping standards imply application design and construction rules and requirements for pipe fittings like adapters, flanges, sleeves, elbows, union, tees, valves etc. Like a code, it also has a limited scope defined by the standard.

Factors affecting standards: “Standards” on pipe fittings are based on certain factors like as follows:

BSP: British Standard Pipe

BSP is the U.K. standard for pipe fittings. This refers to a family of standard screw thread types for interconnecting and sealing pipe ends by mating an external (male) with an internal (female) thread. This has been adopted internationally. It is also known as British Standard Pipe Taper threads (BSPT )or British Standard Pipe Parallel (Straight) threads (BSPP ). While the BSPT achieves pressure tight joints by the threads alone, the BSPP requires a sealing ring.

JIS: Japanese Industrial Standards

This is the Japanese industrial standards or the standards used for industrial activities in Japan for pipe, tube and fittings and published through Japanese Standards Associations.

NPT: National Pipe Thread

National Pipe Thread is a U.S. standard straight (NPS) threads or for tapered (NPT) threads. This is the most popular US standard for pipe fittings. NPT fittings are based on the internal diameter (ID) of the pipe fitting.

BOLTS & NUTS

We are manufacturer of Flange bolts & Nuts and supply high quality

AN: Here, “A” stands for Army and “N” stands for Navy

The AN standard was originally designed for the U.S. Military. Whenever, a pipe fitting is AN fittings, it means that the fittings are measured on the outside diameter of the fittings, that is, in 1/16 inch increments.

For example, an AN 4 fitting means a fitting with an external diameter of approximately 4/16″ or ¼”. It is to be noted that approximation is important because AN external diameter is not a direct fit with an equivalent NPT thread.

Dash (-) size

Dash size is the standard used to refer to the inside diameter of a hose. This indicates the size by a two digit number which represents the relative ID in sixteenths of an inch. This is also used interchangeably with AN fittings. For example, a Dash “8” fitting means an AN 8 fitting.

ISO: International Organization for Standardization

ISO is the industrial pipe, tube and fittings standards and specifications from the International Organization for Standardization. ISO standards are numbered. They have format as follows:

“ISO[/IEC] [IS] nnnnn[:yyyy] Title” where

General standard

Standard Specification
ASTM A234 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Moderate and High Temperature Service
ASTM A420 Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature Service
ASTM A234 WPB ASTM A234 WPB refers to a specific grade of carbon steel pipe fittings, which are widely used in pressure piping and pressure vessel fabrication for service at moderate and elevated temperatures.
ASME B16.9 ASME B16.9 Standard covers overall dimensions, tolerances,ratings, testing, and markings for factory-made wrought buttwelding fittings in sizes NPS 1⁄2 through NPS 48 (DN 15 through DN 1200).
ASME B16.28 ASME B16.28 Standard covers ratings, overall dimensions, testing, tolerances, and markings for wrought carbon and alloy steel buttwelding short radius elbows and returns.
MSS SP-97 MSS SP-97 Standard Practice covers essential dimensions, finish, tolerances, testing, marking, material, and minimum strength requirements for 90 degree integrally reinforced forged branch outlet fittings of buttwelding, socket welding, and threaded types.
ASTM A403 Standard Specification for Wrought Austenitic Stainless Steel Piping Fittings.

Wide variety for all areas of application

DIN EN ASME
St 35.8 I
St 35.8 III
15 Mo 3
13 CrMo 4 4
10 CrMo 9 10
St 35 N
St 52.0
St 52.4
P235GH-TC1
P235GH-TC2
16Mo3
13CrMo4-5
10CrMo9-10
X10CrMoVNb9-1
P215NL
P265NL
L360NB
L360NE
P355N
P355NL1
P355NH
WPB
WPL6
WPL3
WPHY 52
WP11
WP22
WP5
WP9
WP91
WP92

ASTM A234/A234M is a standard specification for piping fittings of wrought carbon steel and alloy steel for moderate and high-temperature service. This specification covers several grades of fittings that are used in various applications in the oil and gas, petrochemical, and power generation industries.

Download PDF

Chemical Composition (%) of ASTM A234/A234M

Grade Type C Si S P Mn Cr Ni Mo Other ób ós δ5
WPB 0.3 0.1min 0.058 0.05 0.29-1.06 0.4 0.4 0.15 V:0.06;Nb:0.02 415-585 240 22 197
WPC 0.35 0.1min 0.058 0.05 0.29-1.06 0.4 0.4 0.15 V:0.06;Nb:0.02 485-655 275 22 197
WP1 0.28 0.1-0.5 0.045 0.045 0.3-0.9 0.44-0.65 380-550 205 22 197
WP12 CL1 0.05-0.2 0.6 0.045 0.045 0.3-0.8 0.8-1.25 0.44-0.65 415-585 220 22 197
WP12 CL2 0.05-0.2 0.6 0.045 0.045 0.3-0.8 0.8-1.25 0.44-0.65 485-655 275 22 197
WP11 CL1 0.05-0.15 0.5-1 0.03 0.03 0.3-0.6 1-1.5 0.44-0.65 415-585 205 22 197
WP11 CL2 0.05-0.2 0.5-1 0.04 0.04 0.3-0.8 1-1.5 0.44-0.65 485-655 275 22 197
WP11 CL3 0.05-0.2 0.5-1 0.04 0.04 0.3-0.8 1-1.5 0.44-0.65 520-690 310 22 197
WP22 CL1 0.05-0.15 0.5 0.04 0.04 0.3-0.6 1.9-2.6 0.87-1.13 415-585 205 22 197
WP22 CL3 0.05-0.15 0.5 0.04 0.04 0.3-0.6 1.9-2.6 0.87-1.13 520-690 310 22 197
WP5 CL1 0.15 0.5 0.03 0.04 0.3-0.6 4-6 0.44-0.65 415-585 205 22 217
WP5 CL3 0.15 0.5 0.03 0.04 0.3-0.6 4-6 0.44-0.65 520-690 310 22 217
WP9 CL1 0.15 1 0.03 0.03 0.3-0.6 8-10 0.9-1.1 415-585 205 22 217
WP9 CL3 0.15 1 0.03 0.03 0.3-0.6 8-10 0.9-1.1 520-690 310 22 217
WPR 0.2 0.05 0.045 0.4-1.06 1.6-2.24 435-605 315 22/28 217
WP91 0.08-0.12 0.2-0.5 0.01 0.02 0.3-0.6 8-9.5 0.4 0.85-1.05 See sdandard 585-760 415 20 248
WP911 0.09-0.13 0.1-0.5 0.01 0.02 0.3-0.6 8.5-10.5 0.4 0.9-1.1 See sdandard 620-840 440 20 248

Notes:

For each reduction of 0.01% below the specified C maximum, an increase of 0.06% Mn above the specified maximum will be permitted, up to a maximum of 1.35%.

The sum of Cu, Ni, Cr, and Mo shall not exceed 1.00%.

The sum of Cr and Mo shall not exceed 0.32%.

The maximum carbon equivalent (C.E.) shall be 0.50, based on heat analysis and the formula C.E.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15.

Mechanical properties of ASTM A234

Tensile Requirements WPB WPC, WP11CL2 WP11CL1 WP11CL3
Tensile Strength, min, ksi[MPa]
(0.2% offset or 0.5% extension-under-load)
60-85
[415-585]
70-95
[485-655]
60-85
[415-585]
 75-100
[520-690]
Yield Strength, min, ksi[MPa] 32
[240]
40
[275]
30
[205]
45
[310]

What is the ASTM A403?

ASTM A403 Stainless Steel Pipe Fittings refers to the material of forged and rolled austenitic stainless fittings for pressure pipes. Common grades are WP304/L, WP316/L. They can be used into many fields as engineering industry, energy conversion plants etc.

ASTM A403 Standard specification covers the standard for wrought austenitic stainless steel fittings for pressure piping applications.

Chemical Composition (%) of ASTM A403

Steel No. Type C Si S P Mn Cr Ni Mo Other ób ós δ5
WP304 0.08 1 0.03 0.045 2 18-20 8-11 515 205 28
WP304H 0.04-0.1 1 0.03 0.045 2 18-20 8-11 515 205 28
WP304L 0.035 1 0.03 0.045 2 18-20 8-13 485 170 28
WP304LN 0.03 0.75 0.03 0.045 2 18-20 8-10.5 N2:0.1-0.16 515 205 28
WP304N 0.08 0.75 0.03 0.045 2 18-20 8-11 N2:0.1-0.16 550 240 28
WP309 0.15 1 0.03 0.045 2 22-24 12-15 515 205 28
WP310 0.15 1.5 0.03 0.045 2 24-26 19-22 515 205 28
WP316 0.08 1 0.03 0.045 2 16-18 10-14 2-3 515 205 28
WP316H 0.04-0.1 1 0.03 0.045 2 16-18 10-14 2-3 515 205 28
WP316LN 0.03 0.75 0.03 0.045 2 16-18 11-14 2-3 N2:0.1-0.16 515 205 28
WP316L 0.035 1 0.03 0.045 2 16-18 10-16 2-3 485 170 28
WP316N 0.08 0.75 0.03 0.045 2 16-18 11-14 2-3 N2:0.1-0.16 550 240 28
WP317 0.08 1 0.03 0.045 2 18-20 11-15 3-4 515 205 28
WP317L 0.03 1 0.03 0.045 2 18-20 11-15 3-4 515 205 28
WP321 0.08 1 0.03 0.045 2 17-20 9-13 Ti:5C-0.7 515 205 28
WP321H 0.04-0.1 1 0.03 0.045 2 17-20 9-13 Ti:4C-0.7 515 205 28
WP347 0.08 1 0.03 0.045 2 17-20 9-13 Nb+Ta:10C-1.1 515 205 28
WP347H 0.04-0.1 1 0.03 0.045 2 17-20 9-13 Nb+Ta:8C-1 515 205 28
WP348 0.08 1 0.03 0.045 2 17-20 9-13 Ta:0.1 515 205 28
WP348H 0.04-0.1 1 0.03 0.045 2 17-20 9-13 Ta:0.1 515 205 28

Notes:

For each reduction of 0.01% below the specified C maximum, an increase of 0.06% Mn above the specified maximum will be permitted, up to a maximum of 1.35%.

The sum of Cu, Ni, Cr, and Mo shall not exceed 1.00%.

The sum of Cr and Mo shall not exceed 0.32%.

The maximum carbon equivalent (C.E.) shall be 0.50, based on heat analysis and the formula C.E.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15.

Mechanical properties of ASTM A403

Grade UNS Tensile Strength, min Yield Strength,min Elongation min % in 4D
ksi MPa ksi MPa Longit % Trans%
ALL ALL 75 515 30 205 28 20
304L S30403 70 485 25 170 28 20
316L S31603 70 485 25 170 28 20
304N S30451 80 550 35 240 28 20
316N S31651 80 550 35 240 28 20
S31726 80 550 35 240 28 20
XM-19 S20910 100 690 55 380 28 20
S31254 94-119 650-820 44 300 28 20
S34565 115 795 60 415 28 20
S33228 73 500 27 185 28 20

Material Furnished to this specification shall conform to the requirements of specifications A960/A960M including any supplementary requirements that are indicates in the purchase order. Failure to company with the common requirements of Specification A960/A960M constitutes non-conformance with this specification . In case of conflict between this specification and Specification A960/A960M , this specification shall prevail.

Material Furnished to this specification shall conform to the requirements of specifications A960/A960M including any supplementary requirements that are indicates in the purchase order. Failure to company with the common requirements of Specification A960/A960M constitutes non-conformance with this specification. In case of conflict between this specification and Specification A960/A960M , this specification shall prevail.

What grade of steel is ASTM A403?

The standard includes several grades of austenitic stainless steel alloys, and uses the WP or CR prefix to mark the grade of steel, depending on the applicable ASTM or MSS size and rated pressure standards. ASTM A403 is designed for forged steel pipe fittings, Cast pipe fittings are not suitable.

Chemical Composition (%) of ASTM A420

Elements WPL6, % WPL9, % WPL3, % WPL8, %
Carbon [C] ≤0.30 ≤0.20 ≤0.20 ≤0.13
Manganese [Mn] 0.50-1.35 0.40-1.06 0.31-0.64 ≤0.90
Phosphorus [P] ≤0.035 ≤0.030 ≤0.05 ≤0.030
Sulfur [S] ≤0.040 ≤0.030 ≤0.05 ≤0.030
Silicon [Si] 0.15-0.40 0.13-0.37 0.13-0.37
Nickel [Ni] ≤0.40 1.60-2.24 3.2-3.8 8.4-9.6
Chromium [Cr] ≤0.30 ... ... ...
Molybdenum [Mo] ≤0.12 ... ... ...
Copper [Cu] ≤0.40 0.75-1.25
Columbium [Cb] ≤0.02 ... ... ...
Vanadium[V] ≤0.08 ... ... ...

Notes:

*For grade WPL6, the limit for Columbium may be increased up to 0.05% on heat analysis and 0.06% on product analysis.

*Fittings of WPL3 made from plate or forgings may have 0.90 % max manganese.

*Fittings of WPL8 made from plate may have 0.98 % max manganese.

Mechanical properties of ASTM A420

ASTM A420/ A420M Tensile Strength, min. Yield Strength, min. Elongation %, min
Grade ksi MPa ksi MPa Longitudinal Transverse
WPL6 65-95 415-655 35 240 22 12
WPL9 63-88 435-610 46 315 20
WPL3 65-90 450-620 35 240 22 14
WPL8 100-125 690-865 75 515 16

*All the elongation values are on the basis of standard round specimen, or small proportional specimen, min % in 4 D.

ASTM A234 is Standard Specification for steel pipe fittings includes carbon and alloy steel material for moderate and high temperature services.

ASME / ANSI B16.9 dimension

ASME B16.9 Standard covers overall dimensions, tolerances,ratings, testing, and markings for factory-made wrought buttwelding fittings in sizes NPS 1⁄2 through NPS 48 (DN 15 through DN 1200).

Download PDF
Nominal Outside Diameter 90° Elbows 45° Elbows 180° Returns
Pipe Size
Long Radius Short Radius Long Radius Long Radius
(inches) (mm) (inches) Center to Face Center to Face Center to Face Radius Center to Center Back to face
(inches) (inches) (inches) (inches) (inches) (inches)
1/2 21.3 0.84 1.5 5/8 2 1.875
3/4 26.7 1.05 1.125 7/16 2.25 1.6875
1 33.4 1.315 1.5 1 7/8 3 2.1875
1.25 42.2 1.66 1.875 1.25 1 3.75 2.75
1.5 48.3 1.9 2.25 1.5 1.125 3 4.5 3.25
2 60.3 2.375 3 2 1.375 4 6 4.1875
2.5 73 2.875 3.75 2.5 1.75 5 7.5 5.1875
3 88.9 3.5 4.5 3 2 6 9 6.25
3.5 101.6 4 5.25 3.5 2.25 7 10.5 7.25
4 114.3 4.5 6 4 2.5 8 12 8.25
5 141.3 5.563 7.5 5 3.125 10 15 10.3125
6 168.3 6.625 9 6 3.75 12 18 12.3125
8 219.1 8.625 12 8 5 12 24 16.3125
10 273.1 10.75 15 10 6.25 15 30 20.375
12 323.9 12.75 18 12 7.5 18 36 24.375

Tolerances of Welded Fittings

NOMINAL PIPE SIZE NPS ANGULARITY TOLERANCES ANGULARITY TOLERANCES
Size Off Angle Q Off Plane P
½ to 4 0.03 0.06
5 to 8 0.06 0.12
10 to 12 0.09 0.19
14 to 16 0.09 0.25
18 to 24 0.12 0.38
26 to 30 0.19 0.38
32 to 42 0.19 0.5
44 to 48 0.18 0.75

All dimensions are given in inches. Tolerances are equal plus and minus except as noted.

  1. Out-of-round is the sum of absolute values of plus and minus tolerance.
  2. This tolerance may not apply in localized areas of formed fittings where increased wall thickness is required to meet design requirements of ASME B16.9.
  3. The inside diameter and the nominal wall thicknesses at ends are to be specified by the purchaser.
  4. Unless otherwise specified by the purchaser, these tolerances apply to the nominal inside diameter, which equals the difference between the nominal outside diameter and twice the nominal wall thickness.

The ASME B16.9 pipe fittings can be used under the jurisdiction of the ASME Boiler & Pressure Vessel Code (BPVC) as well as the ASME Code for pressure piping. Referencing pressure ratings of flanges per ASME B16.5, they can be designated as Classes 150, 300, 600, 900, 1500 and 2500. The allowable pressure ratings for ASME B16.9 pipe fittings may be calculated as for straight seamless pipe of equivalent material in accordance with the rules established in the applicable sections of ASME B31 Code for pressure piping.

Design of Fittings

The design of butt welding pipe fittings made to ASME B16.9 shall be established by one of the following methods: (a) mathematical analyses contained in pressure vessel or piping codes; (b) proof testing; (c) experimental stress analysis with hydrostatic testing to validate experimental results; (d) detailed stress analysis with results evaluation.

Standard Marking

Generally, ASME B16.9 pipe fittings shall be marked to show the following details: “trademark + material grade + wall thickness + size + heat number”. For example, “M ASTM A234 WP5 SCH80 6″ 385“. When steel stamps are used, care shall be taken so that
the marking is not deep enough or sharp enough to cause cracks or to reduce the wall thickness of the fitting below the minimum allowed.

Material & Manufacture

The ASME B16.9 fittings may be made from an extensive range of mateirals covering (1) carbon and low-alloy steels in accordance with ASTM A234 and ASTM A420; (2) austenitic and duplex stainless steels in accordance with ASTM A403 and ASTM A815; (3) nickel alloys in accordance with ASTM B366; (4) aluminum alloys in accordance with ASTM B361; and (5) titanium alloys in accordance with ASTM B363.

ASME B16.9

Pipe Fittings Dimensions Tolerance as per ASME B16.9:

Sizes 1/2″ – 48″

  • ASME / ANSI B16.9 Butt Weld Elbow – Long Radius
  • ASME / ANSI B16.9 Butt Weld Elbow – Short Radius
  • ASME / ANSI B16.9 Butt Weld Reducing Elbow
  • ASME / ANSI B16.9 Butt Weld 45° Elbow
  • ASME / ANSI B16.9 Butt Weld Fabricated Tee
  • ASME / ANSI B16.9 Butt Weld Reducer
  • ASME / ANSI B16.9 Butt Weld Concentric Reducer
  • ASME / ANSI B16.9 Butt Weld Eccentric Reducer
  • ASME / ANSI B16.9 Butt Weld 3D Elbow
  • ASME / ANSI B16.9 Butt Weld Stub Ends
  • ASME / ANSI B16.9 Butt Weld Cross
  • ASME / ANSI B16.9 Butt Weld Reducing Cross
  • ASME / ANSI B16.9 Butt Weld Tees
  • ASME / ANSI B16.9 Butt Weld End Cap
  • ASME / ANSI B16.9 Butt Weld Coupling
  • ASME / ANSI B16.9 Butt Weld Pipe Nipple
  • ASME / ANSI B16.9 Butt Weld 5D Elbow
  • ASME / ANSI B16.9 Butt Welded Pipe Fittings

MSS SP-97

MSS SP-97 Standard Practice covers essential dimensions, finish, tolerances, testing, marking, material, and minimum strength requirements for 90 degree integrally reinforced forged branch outlet fittings of buttwelding, socket welding, and threaded types.

Chemical Composition Requirements of MSS SP 75

Elements Value, %
Carbon (C) ≤0.30
Manganese (Mn) ≤1.60
Phosphorus (P) ≤0.035
Sulfur (S) ≤0.035
Copper (Cu) ≤0.50
Nickel (Ni) ≤0.50
Silicon (Si) ≤0.50
Chromium (Cr) ≤0.25
Molybdenum (Mo) ≤0.13
Vanadium (V) ≤0.13
Columbium (Cb) ≤0.10
Titanium(Ti) ≤0.05

*1. The sum of Cu, Ni, Cr and Mo shall not exceed 1%.

*2. Carbon equivalent C.E.=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 shall not exceed 0.45%.

Beveling

In the behavior, we make beveling after shot blasting, bevel ends are fully machined by advanced equipment Double Beveling Machine ensure the height, length, thickness, O.D. and I.D. are all qualified.

Welding Bevel acc. to

The ends of all buttweld fittings are bevelled, exceeding wall thickness 4 mm for austenitic stainless steel, or 5 mm for ferritic stainless steel. The shape of the bevel depending upon the actual wall thickness. This bevelled ends are needed to be able to make a “Butt weld”.

ASME B16.25 covers the preparation of buttwelding ends of piping components to be joined into a piping system by welding. It includes requirements for welding bevels, for external and internal shaping of heavy-wall components, and for preparation of internal ends (including dimensions and dimensional tolerances).

Our in-hourse R&D team developed bevel ends equipment are good using in thickness 2mm to 20mm pipe fittings, guarantee high efficiency and high quality.

These weld edge preparation requirements are also incorporated into the ASME standards (e.g., B16.9, B16.5, B16.34).

Nominal wall Thickness : t End Preparation
t<5mm (for austenitic alloy steel Cut square or slightly chamfer
t<4mm) at manufacturer ' s option
5<22mm
(4<22mm)< td="" style="box-sizing: border-box;"><22mm)<><22mm
Plain Bevel as in sketch ( a ) above
t>22mm Compound Bevel as in sketch ( b ) above

Process

For the manufacturing process of all pipe fittings, forming is an indispensable process. Because the forming process of different products is different, it needs a long time.

Fittings process

Heating

In order to meet the requirements of material deformation in the forming process, it is necessary to heat the blank when the tube is manufactured by hot forming method. The temperature usually depends on the material and heating process.

During the forming of hot pushing elbow or hot bending elbow, the medium frequency or high frequency induction heating method is usually used, and the flame heating method is also used. This kind of heating mode is continuous heating which is synchronous with the forming process of elbow or elbow. The tube blank is heated in motion and the forming process is completed.

When hot pressing elbow, hot pressing tee or forging are formed, the heating method of reverberatory furnace, flame heating, induction heating or electric furnace heating are usually adopted. This kind of heating is to first heat the tube blank to the required temperature, and then put it into the die for pressing or forging.

Welding

There are two kinds of pipe fittings with welding seam. One is the pipe fittings made of welded pipe. For the pipe fitting manufacturer, the forming process of welded pipe is basically the same as that of seamless pipe, and the forming process of pipe fitting does not include welding process; the other is that the pipe fitting manufacturer completes the welding process required for pipe fitting forming, such as the elbow formed by assembling and welding after single piece pressing The tee pipe is welded into tube blank after being rolled by steel plate drum, etc.

The commonly used welding methods of pipe fittings are manual arc welding, gas shielded welding and automatic welding.

Our factory guides the welding work according to the preparation of the welding procedure specification, and carries out the welding procedure qualification according to the corresponding specification requirements, so as to verify the correctness of the welding procedure specification and evaluate the welding ability of the welder.

Deep Drawing method of end caps

One of the most common manufacturing methods for caps, where plate is cut out in a circle and formed by deep drawing.

Deep drawing is the manufacturing process of forming sheet metal stock, called blanks, into geometrical or irregular shapes that are more than half their diameters in depth. Deep drawing involves stretching the metal blank around a plug and then moving it into a moulding cutter called a die.

A drawing press can be used for forming sheet metal into different shapes and the finished shape depends on the final position that the blanks are pushed down in. The metal used in deep drawing must be malleable as well as resistant to stress and tension damage.

Application

Pipe Tees are widely used in various commercial and industrial applications. Industrial applications include.

We are manufacturer of Reducing tee and supply high quality Reducing tee in both large and small quantities worldwide & offer you the best prices in the market.

Delivery

Inspection

Visual Inspection is conducted on fittings to check any surface imperfections. Both fittings body and weld are checked for any visible surface imperfections such as dents, die marks, porosity, undercuts, etc. Acceptance as per applicable standard.

ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers
ASTM A234 WPB eccentric reducers

Packing

For packing of carbon steel flanges with painting,we would use the bubble wrap to protect the painting.For flanges without painting or oiled with long-term shipment,we would suggest client to use the anti-tarnish paper and plastic bag to prevent the rust.

【H】 Ceramic lined pipe

Ceramic lined pipe is made through self-propagating high-temperature synthesis (SHS) technique.

【H】 Cast basalt lined steel pipe

Cast basalt lined steel pipe is composed by lined with cast basalt pipe, outside steel pipe and cement mortar filling between the two layers.

【H】 Ceramic Tile Lined Pipes

Ceramic tile lined pipes have very uniform coating of specially formulated ceramic material that is affixed to the inner of the pipe.

【H】 Rare earth alloy wear-resistant pipe

The material of the rare earth alloy wear-resistant pipe is ZG40CrMnMoNiSiRe, which is also the grade of rare earth alloy steel.

【H】 Tubes Erosion Shields

Tubes Erosion Shields are used to protect boiler tubing from the highly erosive effects of high temperatures and pressures thereby greatly extending tube life.

【H】 ASTM A213 T91 Alloy Tube

The ASTM A213 T91 seamless tubes are primarily used for boiler, superheater, and heat-exchanger.